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Abstract—The work presented in this paper describes an 
approach, including a methodology and tools, which allows 
system engineers to capture failure-related information in a 
model and generate automatically key failure analysis 
products: the Failure Modes, Effects and Criticality Analysis 
(FMECA) and the Fault Tree Analysis (FTA). The work has 
been developed by Tietronix Software, Inc. and the NASA’s Jet 
Propulsion Laboratory (JPL), and the resulting auto-generated 
artifacts shown in this paper demonstrate the ability to obtain 
powerful reliability and fault management products in a 
model-based environment. 
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1. INTRODUCTION 
As part of the process to create failure analysis products, the 
reliability engineer needs to gather existing project data, 
such as a list of components, their associated functions, and 
various diagrams showing their interaction. These elements 
are usually defined and documented by other engineers on 
the project, and gathering all of the required data can 
become inefficient and time-consuming. As a consequence, 
failure analysis artifacts can rapidly diverge from the design 
as it evolves, and become obsolete. In a model-based 
environment, where this data is available in a common 
repository, the automation of data gathering and processing 
results in freeing time so that the engineer can focus on 
performing the analysis. This approach ensures complete-
ness of the analysis and consistency with the current design, 
a task particularly difficult using traditional methods in the 
context of growing system complexity.  

This innovative approach is based on the recently-published 
JPL’s Fault Management ontology [1], which contains the 
necessary concepts to capture failure modes, faults and 
failure propagation. This ontology extends the Behavior 
ontology [2], and is part of a series of ontologies developed 
at JPL under the Integrated Model-Centric Engineering 
(IMCE) initiative to guide standard modeling across 
projects. The common vocabulary enables engineers to 
capture problematic behaviors to support the discovery of 
failure paths in the system, discovery that often relies on 
engineer-to-engineer communication and data spread across 
multiple documents. An additional benefit of this approach 
is to capture failure and failure propagation information in 
the same central repository, with “nominal” behaviors of the 
system (rather than in separate artifacts managed by 
separate teams), resulting in the earlier discovery of design 
or operational issues.  

We present in this paper a methodology and a software 
toolset which makes use of the Fault Management ontology. 
The objective of this effort was to obtain auto-generated 
artifacts that match the expectations of products developed 
through traditional methods and standards, so that engineers 
could work with familiar products. When deemed useful, 
additional pieces of information or representations enabled 
by the analysis of the model were included, to aid engineers 
in analyzing failure modes and effects. The software 
extracts the relevant behavioral information for each system 
artifact, from a common model, and converts this 
information into the appropriate format. In that light, JPL 
and Tietronix Software designed an approach to map the 
needed information to generate a FMECA and a Fault Tree 
from a SysML model consistent with the Fault Management 
ontology, as shown in Section 2. Section 3 further describes 
the underlying approach, and the technical implementation 
by Tietronix Software of the MagicDraw plugins for 
FMECA and Fault Trees generation, their features and user 
interface, their model validation capabilities, as well as the 
different outputs generated. The outputs range from 
spreadsheets to graphical representations, as well as file 
formats intended as basis for interchange with other third-
party tools used in the reliability and fault management 
fields. These plugins were used on several models with 
different complexity across different projects, with some 
illustrative examples presented in Section 4. Section 5 
concludes this paper.  



 

 2 

2. ONTOLOGY AND ARTIFACT GENERATION 
APPROACH 

Failure Artifact Description 

This paper focuses on two failure analyses: the Failure 
Modes, Effects and Criticality Analysis (FMECA) and the 
Fault Tree Analysis (FTA). 

The FMECA is a reliability design analysis technique used 
to analyze systematically postulated failures in components 
of the system to determine the resultant effects. It is 
performed primarily to identify potential design deficiencies 
and single-point failures (SPFs), so that appropriate risk-
management steps may be undertaken for the flight design 
and mission operations (e.g., preventive measures to 
decrease the likelihood of occurrence of the failure, 
mitigation actions to lessen the consequences of a failure 
when present in the system). Several variants of the 
FMECAs exist, e.g., functional and piece-part FMECAs. 
Functional FMECAs are performed down to the functional 
level to evaluate the impact that lower-level failures have on 
system operation. Functional FMECAs can be done 
at different levels of the design hierarchy, where the scope 
of the FMECAs can be the entire system, or specif-
ic subsystems or assemblies. Piece-part FMECAs are 
performed at interfaces to ensure that irreversible physical 
and/or functional damage does not propagate across Fault 
Containment Region boundaries. For support equipment, 
FMEAs are performed at the piece-part level on interfaces 
to verify that support equipment failures cannot propagate 
or cause damage to flight hardware. This paper focuses on 
functional FMECAs, but the methodology presented in this 
paper can be extended to generate other variants. When 
performing the FMECA, all components are operating 
within specification except for the failure mode under 
consideration. Each failure mode postulated is considered to 
be the only failure in the system (i.e., it is a single-failure 
analysis). 

The FTA is a top-down reliability design analysis technique 
to deduce faults (i.e., failure causes) systematically and to 
assess coverage of risk-reduction steps for those failure 
causes. It covers a broad scope of threats beyond hardware 
failures, such as environmental effects or operator errors. 
Contrary to the FMECA, it assesses the impact of 
combinations of threats, including common-cause failures. 
The top-down approach of the FTA is complementary to the 
bottom-up approach of the FMECA. 

Many of the failure analysis products rely on the same 
information (e.g., failure mode, failure propagation). As a 
consequence, one of the guiding principles for establishing 
the methodology to auto-generate these artifacts was to 
avoid modeling the artifacts themselves, but rather to model 
the system, including its off-nominal behavioral aspects, and 
then to query and extract the appropriate information to 
create the artifacts of interest. In essence, model once, then 

filter and present the relevant information. To this effect, 
JPL recently published a Fault Management ontology, 
which defines a common vocabulary to capture problematic 
behaviors, in particular failure modes, faults, and failure 
propagation. Behaviors are typically modeled using state 
machine representations (e.g., states, transitions), or 
mathematical expressions (e.g., constraint blocks). The 
section below briefly summarizes the Fault Management 
ontology. For details about the ontology or the diagram 
conventions, the reader is referred to [1]. 

Ontology and Mapping to the Artifacts 

Figure 1 shows in blue color parts of the Fault Management 
ontology relevant to this paper, with some updates since its 
initial publication in [1]. Failure modes are considered as 
undesirable behaviors depending on the functional context 
(context provided by the PerformanceConstraint concept), 
and ViolationExplanations are the conduit to indicate their 
presence in the system. Fault or failure propagation is 
modeled using CauseExplanations, a construct that indicates 
logical causation between behaviors. One modification from 
the initial ontology was to redirect the relationship between 
PerformanceConstraint and Function to the “performs” 
relationship instead, to allow for a better modeling of 
redundancy in the model. Also, the concepts of Likelihood, 
MissionImpact, DetectionMechanism and Mitigation have 
been added to the ontology. Part of the work done to auto-
generate failure artifacts was to map the concepts and 
relationships present in the ontology to the information 
needed to construct the artifacts. This mapping is presented 
next. 

Failure Modes, Effects and Criticality Analysis (FMECA) 

The FMECA table is comprised of several columns. The 
exact column number and label vary depending of the 
standard used (e.g., IEC-60812 [3], former MIL-STD-
1629A [4]), but all standards address the following 
concepts: component affected by the failure mode of 
interest; the failure mode; its cause, and its effects at 
different level of abstraction (e.g., local effect, end effect) in 
a given mode of operation; ways of detecting and mitigating 
the failure mode. The criticality analysis related to the 
failure indicates its likelihood of occurring and the 
consequence on the mission. A typical table is shown in 
Figure 2. 

Failure information is captured in a model according to the 
Fault Management ontology, and the following queries are 
performed to create a FMECA table that matches 
expectations of traditional standards mentioned above: 

• Failure mode: a ViolationExplanation in the model 
indicates the presence of a failure mode in a certain 
context (functionality). Each ViolationExplanation 
in the model will have a dedicated row in the 
FMECA and the name of the ViolationExplanation 
will be reported in the “failure mode” column. 
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Figure 1. Excerpts from the Fault Management Ontology [1] – Concepts shown in boxes, with abstract concepts 

italicized; directed arrows for relationships between concepts (name next to the target concept); derived relationships are 
preceded by “/”; multiplicity indicated between brackets. 

 

• Component: as shown in the ontology, a Viola-
tionExplanation explains one or more behaviors 
associated with a unique component. Another 
method can be used to find the associated compo-
nent: a ViolationExplanation analyzes at least one 
PerformanceConstraint that characterizes a “per-
forms” relationship between a Component and a 
Function. The Component is then listed in the 
“component” column of the FMECA. Note that the 
component hierarchy can be indicated in the 
FMECA using the relationship between compo-
nents (e.g., composite association, reference 
association). 

• Function: as mentioned above, a ViolationExplana-
tion relates to at least one Function through the 
PerformanceConstraint concept. The identified 
Function is then listed in the “function” column. 

• Cause: Causes are captured in the model using 
CauseExplanations. The name of all CauseExpla-
nations that analyze the same behavior as the 
ViolationExplanation of interest explains are re-
ported in the “cause” column. 

• Phase of Criticality or Operational Mode of 
Equipment: as part of the model, it is possible to 
define some context in which some functionality is 
required. The current implementation of the plugin 
is restricted to high-level “mission phases” (for ex-
ample: launch, cruise, orbit insertion, science 
collection, disposal. Other phases can be defined 
based on the system and the mission). Functions 
are related to Mission Phases through a composite 
association. If there is no relationship, it is assumed 
that the Function is needed in all phases. The Mis-
sion Phases found through the query are reported in 
the “phase” column. It is envisioned in the future to 
extend this concept to other contextual information 
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by leveraging the ModeContext concept, such as 
operational modes of the system, or to potentially 
infer the context through other means rather than 
direct relationships in the model. 

• Local Effects: failure propagation is captured in the 
model using CauseExplanations. As indicated in 
[1], CauseExplanations indicate a causal relation-
ship between behaviors: for example, if a 
CauseExplanation analyzes Behavior 2 (B2) and 
explains Behavior 1 (B1), it means that B1 is the 
cause of B2, or conversely, B2 is the effect of B1. 
The latter interpretation is the one of interest for 
determining the effects. At JPL, we decided that 
the local effect would represent the effect of a fail-
ure mode on the behavior of components one level 
up in the component hierarchy. Using the example 
described in [1] where a Lamp is part of an Illumi-
nationDevice that is itself part of Rover, if a failure 
mode in the Lamp has an effect on the Illumina-
tionDevice, then the associated behavior in the 
IlluminationDevice is reported in the “local effect” 
column. If the behavior of the IlluminationDevice 
is itself explained by a ViolationExplanation, the 
ViolationExplanation is reported in the “local ef-
fect” column instead of the behavior. Note that it is 
possible to have several effects listed in the “local 
effect” column, depending on the causal relation-
ships captured in the model through 
CauseExplanations. Note also that it is possible for 
a failure mode to have no local effect if no higher-
level components are reached through causal rela-
tionships. As mentioned earlier, the FMECA is a 
single failure analysis: this means that the effects 
reported in the “local effects” column must be re-
lated to a single ViolationExplanation. If several 
ViolationExplanations need to be combined to ob-
tain that effect (e.g., through an AND logical 
statement in a CauseExplanation in the fault propa-
gation path), then that effect will not be listed. 

• End Effects: continuing the discussion from the 
local effect above, the end effect of a failure mode 
is determined through causal relationships using 
CauseExplanations. Given that FMECAs can be 
performed at different levels (e.g., system, subsys-
tem), it was decided to leave the determination of 
the level to the user (in our implementation, 
through a selection menu in the FMECA plugin): 
the user selects the top component, and end effects 
will be reported in a similar fashion as for the local 
effects: if there is a chain of CauseExplanations 
that reaches the top component, then the behavior 
of the top component or its ViolationExplanation if 
applicable will be reported in the “end effects” col-
umn. For example, the user can select the Rover as 
the scope of the FMECA: in that case, given that a 
broken lamp results in the inability for the Rover to 
perform some science activities, that effect will be 

listed in the row related to the broken lamp. Note 
that in this example, the fact that there is a single 
level “hop” between the local and the end effect is 
coincidental; many levels can exist in general. Also 
note that the comment made above for local effects 
regarding the single failure point of view of 
FMECA also applies for determining end effects. 

• Detection Method: in the ontology, there is a 
relationship between a ViolationExplanation and 
DetectionMechanism. Found Detection Mecha-
nisms will be listed in the “detection method” 
column. 

• Compensating Provisions: using the ontology, 
mitigating actions can be captured using the Miti-
gation concept, related to ViolationExplanation 
through the “mitigates” relationships. Found Miti-
gations will be listed in the “compensating 
provisions” column. 

• Likelihood: the likelihood of a failure mode is 
captured in the model using a Likelihood block that 
characterizes the ViolationExplanation of interest. 
Different standards and approaches are possible for 
rating the likelihood. At JPL, we use a 1-3 rating to 
indicate a low, medium, or high probability. 

• Severity/Mission Impact: as for the likelihood, the 
severity of the failure mode is modeled using a 
MissionImpact block that characterizes the Viola-
tionExplanation. Here as well several rating 
schemes are used in the industry. JPL uses a 1-6 
rating scheme, where 1 is a minor impact on the 
mission and 6 is a catastrophic failure. If no rating 
is provided, the tool will try to infer a rating, by 
making use of the redundancy information cap-
tured using the RedundancyExplanation concept. 

Figure 2 illustrates the building of an FMECA table, in a 
simple case. One more piece of information the tool 
presents is the entire fault propagation path starting with the 
ViolationExplanation of interest. This is a great enhance-
ment provided by the model compared to the traditional 
artifact, as it allows the analyst to fully understand the 
impact of a failure mode in the system, rather than at two or 
three pre-determined levels. 

Fault Tree Analysis (FTA) 

The FMECA process described above is fairly straightfor-
ward compared to the Fault Tree construction. Despite the 
existence of detailed standards or handbooks related to 
building fault trees (e.g., [5]), the determination of the 
immediate causes of an event and their grouping often 
remain dependent on the analysts and their understanding of 
the system. As part of the development of the FTA plugin, 
we decided on an approach to build systematically a fault 
tree from model information and developed rules to present 
and to group events. 
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Figure 2. FMECA Construction from Model Information

The Fault Tree Analysis starts with determining the scope of 
the analysis. To that effect, the analyst is presented with a 
list of all ViolationExplanations in the system (organized by 
components). The analyst then selects the ViolationExplana-
tion that will constitute the top of the tree. From there, the 
tool will explore systematically the fault propagation paths 
in the model by identifying CauseExplanations and parsing 
the logical statements they may hold. The immediate causes 
of an event are determined through various means, as 
described in the next few paragraphs. 

The simplest case occurs when “simple” CauseExplanations 
are present, that is, CauseExplanations with single analyzes 
and explains relationships. For example, as illustrated in 
Figure 3, three CauseExplanations analyze the same 
behavior (B1), and each explains a single behavior (B2, B3, 
and B4). In that particular case, the fault tree will interpret 
this model as an OR gate with three immediate causes of the 
event of interest. If the behaviors are explained by 
ViolationExplanations, the ViolationExplanations are 
reported in the tree instead of the behaviors themselves. 
Note that the same tree could be captured using a single 

CauseExplanation with the following logical statement: B2 
OR B3 OR B4. 

 
Figure 3. Simple OR gate 

However, the logical combination of causes can be more 
complex than OR statements. Logical statements are 
captured using UML expressions that reference a library of 
logical operators and the relevant behaviors in the model. 
For example, if Behavior 2 (B2) and either Behavior 3 (B3) 
or 4 (B4) are needed for a given effect (B1), then the logical 
statement captured in the model will be of the form “B2 
AND (B3 OR B4)”. The tool described in this paper is able 
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to understand these logical expressions, and renders them in 
the form of a tree. However, due to some restrictions on the 
structure of fault trees for this approach to comply with the 
NASA Fault Tree Handbook [5], more processing is 
required. Indeed, fault trees must alternate gates and events; 
gate-to-gate connections or event-to-event connections are 
not allowed. In the example above, the tool cannot directly 
connect the AND gate and the OR gate; an event must be 
placed as shown in Figure 4, and the tool has been designed 
to extract labels from the model for these “extra” events as 
much as possible. It currently uses for example the names of 
expressions in the expression tree modeling the logical 
statements. More techniques are considered for future 
enhancements, such as leveraging super-state information. 

 
Figure 4. Logical Expression 

The tool also handles common-cause failures. As described 
in [1], common-cause failures are modeled using 
CauseExplanations with multiple analyzes relationships. In 
that case, the tool will display the associated cause in 
multiple locations in the tree, with the “CC” label following 
the name of the event, as shown in Figure 5.  

Fault tree standards provide guidance for determining the 
causes of an event, particularly highlighting the necessity to 
take a methodical one-step-at-a-time leading to the 
discovery of immediate causes, without jumping to lower 
level events. For example, if several failure modes of a same 
component lead to the same effect, they will report first a 
“component failure” in the tree before going into the detail 
of the various failure modes. The tool provides a similar 
functionality by identifying situations where multiple failure 
modes of a same component are found as immediate causes, 
and inserts an event in-between highlighting the component. 
A similar behavior occurs when several failure modes 
related to a same function are found: in that case, an event 
related to the function is inserted in the tree, as shown in 
Figure 6. 

 
Figure 5. Common-cause failures 

 

 
Figure 6. Component and Functional Grouping 

The FTA plugin traverses the failure propagation path 
usually by looking exclusively at CauseExplanation 
relationships. However, more model constructs are 
considered to deduce the propagation path. For example, the 
tool takes into consideration transitions between states in 
state machines. While building the fault tree, if there is an 
incoming transition to an event in the tree, and the transition 
itself or the source of the transition have CauseExplanations 
pointing at it, then the tool will continue exploring the 
failure path using these CauseExplanations. More constructs 
are under consideration for future releases, such as 
continuing the failure path from sub-states to super-states. 

Finally, the tool identifies parts of the tree that are repeated 
in different branches and creates transfer gates and sub-trees 
for ease of review. 

JPL and Tietronix Software derived about 90 high-level 
requirements for the FMECA and FTA tools, specifying 
both the tool scope, but also the required outputs and user 
interface. The following section describes the software 
implementation. 
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3. SOFTWARE IMPLEMENTATION 
Tietronix Software, Inc. developed a set of Fault 
Management (FM) tools within the selected modeling tool 
(MagicDraw) to extract the information captured within the 
models. Tietronix Software developed a FMECA plugin, a 
FTA plugin, and error handling capabilities for both the 
FMECA and FTA plugins. Tietronix Software extended a 
methodology established in prior work for nominal model-
based design to support the fault management domain [6], 
[7], and [8]. Tietronix Software developed a set of FM 
plugins that were demonstrated on NASA JSC projects for 
the Cascade Distillation System and a Habitat Power 
Architecture model [9]. Tietronix Software leveraged this 
technology and adapted the tools to fit the Fault Manage-
ment ontology and rules presented in Section 2 to 
automatically extract FMECA and Fault Tree Analysis 
products from the system models. The error handling 
capability checks the models against the Fault Management 
ontology and flags non-conformances. Both plugins include 
this capability and generate a report with the suspected 
model element or relationship and a description of the 
suspected non-conformance. If errors are detected, the 
analyst is given the choice to continue with the generation 
of the artifact, or to stop and fix the model. The error 
detection capability gives the assurance to the analyst that 
the model is built correctly according to the rules of the 
Fault Management ontology. 

As part of the plugin development a Fault Common plugin 
was developed. This plugin captures the mapping between 
the ontology (Figure 1) to the MagicDraw SysML elements 
and relationships. The Fault Common plugin is a utility that 
is used by both the FTA and FMECA plugins, making it 
possible to make updates reflected in the ontology in one 
place. The software is written in JAVA and its installation 
adheres to the MagicDraw plugin installation standards. 
This section describes in detail the tools developed. 

FMECA Plugin 

The FMECA Plugin was built to extract details about 
potential failure modes described in the model and traverses 
behavior constructs to determine potential local/end effects 
for analysis. 

The FMECA plugin presents a user interface that allows the 
user to select the end effect level based on the component 
hierarchy. Using the ontology described in Section 2, the 
plugin identifies all the ViolationExplanations in the model, 
all Components and associated hierarchy (both physical 
through composite associations and logical through 
reference associations), and the behavior elements. The tool 
then traverses the fault propagation paths, extracting data, to 
populate the FMECA table (Figure 2). 

Several outputs are generated, and presented to the user 
through different formats: 

• Output views: two views are generated by the tool, 
a detailed view and a summary view. The detailed 
view has a unique row for every combination of 
component, failure mode, cause, mission phase, lo-
cal effect, end effect, detection method, and 
mitigation detected along each fault propagation 
path. The detailed view is an additional tool pro-
vided to the user to understand the model data for a 
more in-depth failure analysis and for debugging 
the model. By contrast, the summary view has a 
row for every combination of component, failure 
mode, and mission phase, but compresses the data 
for causes, local and end effects, detection meth-
ods, and mitigations into a cell for each row, akin 
to a traditional FMECA output. 

• Output formats: The results are displayed within 
the plugin’s user interface in tabular form, allowing 
the user to look at the FMECA in the modeling en-
vironment and verify the model correctness. The 
user interface is designed to allow the customer to 
tailor the desired product by selecting or deselect-
ing columns of interest for analysis. The analysis is 
saved in Excel and csv file formats, for communi-
cation, review and archiving. The plugin is able to 
support any pre-defined FMECA Excel template. 

FTA Plugin 

The FTA Plugin derives fault trees from ViolationExplana-
tions, representing potential top-level events, and traverses 
relationships to extract the fault tree event paths for 
analysis. Using the ontology described in Section 2, the 
plugin identifies all the ViolationExplanations in the model 
and lists them as potential events for analysis in the Fault 
Tree User Interface. The plugin then generates a Fault Tree 
Markup Language (FTML) file. The FTML is an XML-
based file format designed by Tietronix Software to 
generate the fault tree displayed in the Fault Tree Viewer in 
MagicDraw, an Excel version of the fault tree, an SVG 
view, JPG file outputs, as well as to support third-party tool 
exchange. For example, using an adapter reading FTML 
data, the fault tree was exported to SAPHIRE, a probabilis-
tic risk and reliability assessment tool [10].  

The user interface in the Fault Tree Viewer allows the 
modeler to interact between the fault tree display and the 
MagicDraw model elements by right-clicking on a Fault 
Tree event and selecting “Select in Containment Tree” (see 
Figure 7). The user can quickly explore the fault tree and 
understand the elements that participated in its construction. 
In addition, the user can collapse and expand events in the 
tree and allow for traversing multiple linked fault trees via 
transfer events. 
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Figure 7. Fault Tree Event Tool Options 

As mentioned above, the plugin also generates a version of 
the fault tree in a SVG format, that can be opened in a web 
browser for example, enabling the communication of the 
fault tree to colleagues and reviewers in a cross-platform 
fashion. The SVG view is also fully interactive, with 
collapsing/expanding actions and transfer event navigation. 
Excel versions of the fault tree can be used for capturing 
information in subsequent fault management activities, and 
the JPG files can be used in reports or presentations. 

Transfer events are automatically generated when repetitive 
events are found in the tree. The tool provides the ability to 
navigate between fault trees via transfer events (shaded in 
blue and marked with a standard triangular symbol) and 
back via selection of a fault tree in the “Transfer From” 
table. In Figure 8, the left column provides the user a list of 
available views generated for one user selected event. The 
options include the complete fault tree which does not show 
transfer events or the fault trees with active transfer events.  

 
Figure 8. “Lamp B Filament Broken” Transfer Tree and 

“Resistance Shorted” Transfer Event 

The tool is capable of extracting statistics from the model 
including counts for Basic Events (unique/ repeated/ total 
counts), Intermediate Events (unique/ repeated/ total 
counts), Transfer Events (unique/ repeated / total counts), 
Common Cause failures, and occurrences of Basic Events. 

4. EXAMPLES 
The following section describes example models used to 
demonstrate the modeling techniques and toolsets. 

Illumination Device Example 

The Illumination Device Model example represents an 
Illumination Device on the Rover that supports nighttime 
driving and select science activities (Figure 9), derived from 
the example presented in [1]. This example was used as a 
proof of concept for developing the basic capabilities of the 
FMECA and FTA plugins, and it illustrates how the 
ontological concepts and their use in a model result in the 
creation of FMECA and fault tree artifacts that match 
traditional expectations. 

 

Figure 9. Illumination Device Model Architecture 

In this subsection, we depict how the loss of the Battery 
results in losing the ability to provide a proper illumination, 
which in turn affects the performance of the Rover. The 
failure mode of interest (no electrical power supplied) is 
captured in the Battery behavior model shown in Figure 10 
with a ViolationExplanation named “Battery No Output”. 
Several states are explained by this ViolationExplanation, 
“Fully Discharged” and “Dead Battery”. The ViolationEx-
planation indicates that these states are problematic with 
respect to the battery functionality.  

Figure 11 describes the fault propagation path from the 
Battery component state machine to the Rover state 
machine, through the Illumination Device. The CauseEx-
planation “Dead Battery” explains the Battery state “Dead 
Battery” and analyzes the Illumination Device state 
“Permanent Insufficient Illumination”, indicating that the 
battery state adversely affects the variable of interest at the 
Illumination Device level, i.e., its luminous flux. Then the 
CauseExplanation “Loss of Nighttime Driving Illumination” 
explains the Illumination Device state “Permanent 
Insufficient Illumination” and analyzes the Rover state 
“Nighttime Driving Unavailable”, completing the 
propagation chain by indicating that nighttime driving is 
compromised. Note that the associations shown between the 
CauseExplanations and ViolationExplanations to the State 
Machines are abstractions of the actual dependency 
relationships that are established between these elements 
and the states owned by the State Machine, for visualization 
purposes. 
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Figure 10. Battery Behavior Model Showing Battery No Output ViolationExplanation 

 

Figure 11. Fault Propagation Path Description for 
failure mode “Battery No Output” – Associations from 

Explanations for visualization purposes only 

Figure 12 shows an excerpt of the FMECA plugin output in 
the modeling environment. The Rover was selected as the 
end effect level, and the highlighted row relates to the 
“Battery No Output” failure mode discussed above, 
presented in the “summary view”. As expected in a 
traditional FMECA, the failure mode is properly listed, with 
cause and effect information. Here, the local effect is the 
“Permanent Insufficient Illumination” and the end effect is 
the “Loss of nighttime driving ability”, inferred by the tool 
by traversing the failure propagation chain described above. 
Several columns to the right are not shown in the figure, 
containing information about detection mechanism, 
mitigation, likelihood and criticality rating. As described 
earlier in the paper, the “detailed view” (available through a 
tab) displays individual failure propagation paths. The 
“error summary” tab list issues, if any, detected by the 
plugin. Also, several csv and Excel files were created when 
the plugin ran the analysis. 

 

 

Figure 12. Result of FMECA Output for “Battery No Output” Failure Mode 
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Figure 13. “Loss of driving ability” Fault Tree Output 

Figure 13 depicts the Fault Tree analysis output in the 
modeling environment for the “Loss of nighttime driving 
ability” event, depicted as a ViolationExplanation in Figure 
11. “Loss of nighttime driving ability” is the top event, with 
“Permanent Insufficient Illumination” shown as an 
immediate cause. Note that the “Battery No Output” event 
on the bottom right corner of the figure is not listed 
immediately below: as shown in Figure 6, a functional 
grouping was detected by the plugin, and it created an 
intermediate event to gather several failure modes related to 
the battery functionality. As seen in the fault tree, another 
battery state (“Battery Low Voltage”) can lead to 
insufficient illumination, and it is grouped with the “Battery 
No Output” event under the plugin-inferred intermediate 
event. Several trees were created, as seen in the left panel in 
the FTA plugin interface, as repeating sections of the fault 
tree were detected by the FTA plugin. Transfer events were 
created as a result. Note also that in Figure 13, several 
branches were collapsed for readability, marked by a “+” 
symbol embedded in the gate. 

Habitable Spacecraft Example 

The Habitable Spacecraft model is a simplified representa-
tion of a NASA spacecraft architecture that was used to 
apply the fault management methodology to space systems, 
as well as to demonstrate the implementation of more 
complex modeling aspects, such as redundancy, cross tie 
application and multiple subsystems. The Habitable 
Spacecraft is a Vehicle with three subsystems: Power, 
Environment and Life Support System (ECLSS) and the 
Command & Data Handling (CD&H) System (Figure 14). 
In this subsection, we depict how the loss of the cabin air 
circulation results in failure of the life support system, 
which then affects the success of the mission. We then 
provide the FMECA and FTA output from the plugins tools. 

 

 

Figure 14. Fan in the Can Model Architecture 

Figure 15 depicts the Cabin Fan behavior model. The Cabin 
Fan has the function “Circulate Air”, and the failure mode 
of interest here is the “Loss of Cabin Air Circulation” 
captured by the appropriate ViolationExplanation that 
explains the state “Cabin Fan Failed off”.  

Figure 16 describes the fault propagation path from the 
Cabin Fan component state machine to the Habitable 
Spacecraft state machine, through the ECLSS subsystem. 
The CauseExplanation “ECLSS Failed Off”, explains the 
Cabin Fan state “Cabin Fan Failed Off” and analyzes the 
ECLSS state “ECLSS Failed Off”. Then the CauseExplana-
tion “Habitable Spacecraft Failed Off” explains the ECLSS 
state “ECLSS Failed Off” and analyzes the Habitable 
Spacecraft state “Habitable Spacecraft Failed Off”.  

The FMECA result shows that the failure mode “Loss of 
Cabin Fan Air Circulation” has a Local Effect of “Loss of 
Life Support” and an end effect of “Loss of Crew” (Figure 
17). Since the Cabin Fan is referenced by ECLSS, the 
ViolationExplanation, “Loss of Life Support”, is reported as 
the local effect. A similar relation exists between ECLSS 
and the Habitable Spacecraft, and “Loss of Crew” is 
reported as the end effect. Since the CauseExplanation 
“Cabin Fan Malfunction 1” analyzes the failed state, “Cabin 
Fan Failed Off”, the CauseExplanation is reported in the 
FMECA as a potential failure cause, and in the fault tree as 
a child event to the “Loss of Cabin Fan Air Circulation” 
event. Figure 18 depicts the Fault Tree analysis result for the 
“Loss of Crew” event. Note that “Loss of Cabin Fan Air 
Circulation” is depicted as an intermediate event. Note also 
that the fault tree has been collapsed under the power 
subsystem failure event, as indicated by the “+” signal 
below the event. 
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Figure 15. Cabin Fan Behavior Model 

 

Figure 16. Fault Propagation Path Description for 
failure mode “Loss of Cabin Fan Air Circulation” – 

Associations from Explanations for visualization purposes 
only 

 

Figure 17. Results of FMECA Output for Loss of Cabin 
Fan failure and End Effects 

 

Figure 18. Fault Tree for “Loss of Crew” Event 
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5. CONCLUSION  
This paper presented an approach to capture failure 
information in a modeling environment using the JPL-
authored Fault Management ontology and a set of plugins 
designed to automatically extract two reliability artifacts, 
the FMECA and the Fault Tree. The mapping between the 
ontological elements and the artifact building blocks was 
described and illustrated through two examples.  

The concept described in this paper demonstrates the ability 
to obtain products in a model-based environment that meet 
traditional expectations, as well as leverage model 
information to provide the user with in-depth analysis 
capabilities. This concept enables the integration of fault 
management early in the system engineering lifecycle, 
facilitating the discovery of design weaknesses and 
enhancing the capability to produce safe, hazard-free 
systems. This tool suite enables reliability engineers to use 
system models captured by system engineers to evaluate 
designs for potential faults, perform reliability analyses, and 
contribute to the overall system models by adding specific 
faults and associated reliability-related knowledge.   

The FMECA and Fault Tree plugins have been used on 
projects at JPL, for example for the Soil Moisture Active 
Passive (SMAP) spacecraft or the Europa Clipper mission. 
Future work will include several extensions. For example, 
we will focus on expanding the Fault Management toolset to 
support reliability analysis for multiple Project Lifecycle 
Phases. For the FMECA and FTA tools, future additions 
will include features such as supporting active or passive 
redundancy, voting gates, and suggesting a wider range of 
criticality ratings to the user. Also, we will continue work 
on extending the plugins to support Probability Risk 
Assessment (PRA) and Bayesian probability theory with 
third-party tool support (e.g., MATLAB, Microsoft 
Bayesian Network (MSBNx)). Extensions such as these will 
help to analyze and mature more efficiently the design of 
systems for NASA and other industry applications. 
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